Einführung in die Organisation

Video 157

Kurs 5 im Überblick: Setzen Sie Ihre Erwartungen

 
A list of all 8 courses. Course 5 (Analyze Data to Answer Questions) is highlighted.
  1. Grundlagen: Daten, Daten, überall

  2. Fragen stellen, um datengesteuerte Entscheidungsfindungen zu treffen

  3. Daten für die Erkundung vorbereiten

  4. Daten von schmutzigen zu bereinigten Daten verarbeiten

  5. Daten analysieren, um Fragen zu beantworten (dieser Kurs)

  6. Daten durch die Kunst der Visualisierung weitergeben

  7. Datenanalyse mit R-Programmierung

  8. Google Data Analytics Capstone: Vervollständigen Sie eine Fallstudie

Willkommen zum fünften Kurs der Reihe für das Google Data Analytics Zertifikat! Das Ziel der Datenanalyse ist es, aus den Daten, die Sie sammeln und erhalten, einen Sinn zu machen. Bis jetzt haben Sie sich auf die Vorbereitungen konzentriert, die eine Fachkraft für Datenanalyse durchläuft, bevor sie in die Analysephase eintritt. Insbesondere haben Sie im letzten Kurs gelernt, wie man Daten auf Vollständigkeit überprüft und sie auf Genauigkeit und Zuverlässigkeit bereinigt.

Wenn Sie sich wie ein Wanderer fühlen, der eine große Strecke zurückgelegt hat, um höher zu kommen, freuen wir uns, Ihnen sagen zu können, dass Sie angekommen sind! Sie haben ein Stadium erreicht, in dem Sie bereit sind, direkt mit Daten zu arbeiten. Sie werden Daten organisieren und formatieren. Dies wird Ihnen helfen, Daten auf andere Weise zu betrachten. Ähnlich wie die Aussicht von einem Wanderaussichtspunkt erstaunlich ist, wird Ihr Blick auf Daten ab diesem Zeitpunkt spektakulär sein.

Sie werden praktische Erfahrungen mit dem Organisieren, Sortieren, Filtern, Formatieren, Konvertieren und Kombinieren von Daten in Tabellen machen. Dies sind Aufgaben, die Sie in einem echten Datenanalyseprojekt erledigen würden. Sie werden auch lernen, wie Sie Ihre Daten mithilfe von SQL-Abfragen sortieren und filtern können. Sie werden im weiteren Verlauf des Kurses häufig Funktionen verwenden und Abfragen schreiben.

Inhalt des Kurses

Kurs 5 – Analysieren Sie Daten, um Fragen zu beantworten

  1. Organisieren Sie Daten, um mit der Analyse zu beginnen. Das Organisieren von Daten erleichtert die Verwendung der Daten in einer Analyse. In diesem Teil des Kurses lernen Sie, wie wichtig es ist, Ihre Daten durch Sortieren und Filtern zu ordnen. Sie werden sich mit der Organisation von Daten sowohl in Tabellen als auch mit SQL-Abfragen und temporären Tabellen beschäftigen.

  2. Daten formatieren und anpassen. Wenn Sie sich der Analyse Ihrer Daten nähern, werden Sie die Daten formatiert und einsatzbereit haben wollen. In diesem Teil des Kurses erfahren Sie alles über das Konvertieren und Formatieren von Daten, einschließlich der Verwendung von SQL-Abfragen zur Kombination von Daten. Sie werden auch den Wert des Feedbacks und der Unterstützung durch Ihre Kollegen entdecken und erfahren, wie dies zu neuen Statistiken führen kann, die Sie bei Ihrer Arbeit anwenden können.

  3. Daten für die Analyse aggregieren. Während einer Analyse müssen Sie möglicherweise Daten kombinieren, um Statistiken zu gewinnen und Geschäftsziele zu erfüllen. In diesem Teil des Kurses werden Sie die Funktionen, Prozeduren und die Syntax zur Kombination oder Aggregation von Daten kennenlernen. Sie werden lernen, wie Sie Daten in mehreren Zellen in Tabellenkalkulationen und in mehreren Datenbanktabellen mit Hilfe von SQL-Abfragen kombinieren können.

  4. Datenberechnungen durchführen. Berechnungen sind eine der häufigsten Aufgaben, die Fachkräfte für Datenanalyse während einer Analyse durchführen. In diesem Teil des Kurses lernen Sie Formeln, Funktionen und Pivot-Tabellen in Tabellenkalkulationen und SQL-Abfragen kennen. All dies wird bei Datenberechnungen verwendet. Außerdem lernen Sie die Vorteile der Verwendung von SQL zur Verwaltung temporärer Datenbanktabellen kennen.

Was Sie erwarten können

Sie können davon ausgehen, dass Sie diesen Kurs in etwa fünf Wochen abschließen werden, wenn Sie alle vorgeschriebenen Aktivitäten absolviert haben, zu denen auch gehören:

  • Videos von Ausbildern, die neue Konzepte vermitteln und die Verwendung von Tools demonstrieren

  • In-Video-Fragen , die während oder am Ende eines Videos auftauchen, um Ihren Lernstand zu überprüfen

  • Lektüre, um neue Ideen vorzustellen und auf den Konzepten aus den Videos aufzubauen

  • Diskussionsforen um neue Ideen zu diskutieren, zu erforschen und zu festigen, um besser zu lernen

  • Diskussionsprompts zur Förderung des Denkens und der Einbindung in die Diskussionsforen

  • Praktische Aktivitäten zur Einführung in reale Situationen am Arbeitsplatz sowie in die Tools und Aufgaben zur Erledigung von Aufträgen

  • Übungstests zur Vorbereitung auf benotete Quizze

  • Praktische Aktivitäten zur Festigung der erlernten Fähigkeiten für die benoteten Quizfragen

  • Benotete Quizfragen, um Ihre Fortschritte zu messen und Ihnen wertvolles Feedback zu geben

Praktische Übungen bieten Ihnen zusätzliche Möglichkeiten, Ihre Fähigkeiten zu verbessern. Versuchen Sie, so viel wie möglich aus ihnen herauszuholen. Die Bewertungen basieren auf dem Ansatz des Kurses, eine große Vielfalt an Lernmaterialien und Aktivitäten anzubieten, die wichtige Fähigkeiten verstärken. Benotete und unbenotete Quizfragen helfen Ihnen, den Inhalt zu verinnerlichen. Unbenotete Übungstests bieten Ihnen die Möglichkeit, sich auf die benoteten Tests vorzubereiten. Beide Arten von Quiz können mehrmals absolviert werden.

Zur Erinnerung: Dieser Kurs ist für alle Lerntypen geeignet, ohne dass ein Abschluss oder Vorkenntnisse erforderlich sind. Da jeder Mensch anders lernt, wurde das Google Data Analytics-Zertifikat unter Berücksichtigung dieses Aspekts entwickelt. Die personalisierten Fristen sind nur ein Anhaltspunkt, also arbeiten Sie ruhig in Ihrem eigenen Tempo. Für verspätete Aufgaben gibt es keine Strafe. Auf den Seiten Benotung und Übersicht finden Sie die OptionFristen zurücksetzen. Klicken Sie darauf, um zu einem neuen Zeitplan für den Kurs mit aktualisierten Fristen zu wechseln. Wenden Sie sich an Coursera, wenn Sie weitere Hilfe benötigen.

Wenn Sie sich frühere Inhalte ansehen oder einen Vorgeschmack auf kommende Inhalte erhalten möchten, können Sie die Navigationslinks oben auf dieser Seite verwenden, um zu einem anderen Kurs des Programms zu wechseln. Wenn Sie alle erforderlichen Aufgaben bestanden haben, sind Sie auf dem besten Weg, Ihr Zertifikat zu erhalten.

Tipps

  • Versuchen Sie, alle Aufgaben der Reihe nach zu erledigen. Alle neuen Informationen bauen auf den vorherigen Lektionen auf.

  • Behandeln Sie jede Aufgabe so, als ob es sich um eine praktische Erfahrung handeln würde. Stellen Sie sich vor, dass Sie in einem Unternehmen oder in einer Organisation als Fachkraft für Datenanalyse arbeiten. Das wird Ihnen helfen, das Gelernte in der realen Welt anzuwenden.

  • Wiederholen Sie die gezeigten Aufgaben für sich selbst, um zu üben und schneller zu werden.

  • Auch wenn sie nicht benotet werden, ist es wichtig, dass Sie alle Übungsaufgaben lösen. Sie helfen Ihnen, eine solide Grundlage als Fachkraft für Datenanalyse aufzubauen und bereiten Sie auf die benoteten Prüfungen vor.

  • Nutzen Sie alle zusätzlich zur Verfügung gestellten Ressourcen, einschließlich Diskussionsforen und Links zu externen Artikeln für weitere Informationen.

  • Wenn Sie im Kurs auf nützliche Links stoßen, denken Sie daran, diese mit einem Lesezeichen zu versehen, damit Sie die Informationen später zum Studium oder zur Überprüfung aufrufen können.

  • Zusätzliche Ressourcen sind kostenlos, aber einige Websites haben ein LIMIT, wie viele Artikel Sie pro Monat kostenlos abrufen können. Manchmal müssen Sie sich auf der Website registrieren, um vollen Zugriff zu erhalten, aber Sie können jederzeit ein Lesezeichen setzen und später darauf zurückgreifen.

  • Verwenden Sie ein Notizbuch oder ein elektronisches Journal, um neue Formeln, Funktionen und Syntax, die Sie lernen, zu verfolgen. Auf diese Weise können Sie bei Bedarf auf alle Notizen zurückgreifen.

Fachkräfte für Datenanalyse verwenden häufig Tabellen und SQL-Abfragen. Wenn Sie alle zugewiesenen Aktivitäten in den empfohlenen App-Umgebungen durchführen, erhalten Sie eine gute Vorstellung davon, was Sie als Fachkraft für Datenanalyse in Ihrem Job tun könnten.

Aktualisierungen des Kurses

Während Sie diesen Kurs absolvieren, werden Sie möglicherweise Aktualisierungen des Inhalts bemerken, wie neue Übungsmaterialien und zusätzliche Beispiele. Diese Aktualisierungen stellen sicher, dass das Programm aktuelle Fähigkeiten und Anleitungen bietet, die Ihnen bei Ihrer Data Analytics-Karriere helfen werden. Wenn Sie bereits eine benotete Aktivität absolviert haben, müssen Sie die Bewertung möglicherweise wiederholen, um diesen Kurs abzuschließen. Weitere Informationen finden Sie im Diskussionsforum des Kurses.

Der Prozess der Analyse

Video 158

Ayanna: Dranbleiben

Video 159

Immer ein Bedürfnis zu organisieren

Video 160

Daten sortieren und filtern, um sie zu ordnen

Die ersten beiden Phasen der Datenanalyse, Daten organisieren und Daten formatieren und anpassen, sind für Fachkräfte für Datenanalyse wichtig, denn sie können diese Phasen nutzen, um ihre Daten so zu manipulieren, dass wichtige Muster und Trends deutlicher werden. Die meisten Datasets, mit denen Sie als Fachkraft für Datenanalyse arbeiten werden, sind als Tabellen organisiert. Tabellen sind hilfreich, weil Sie damit Ihre Daten manipulieren und kategorisieren können. Wenn Sie über eindeutige Kategorien und Klassifizierungen verfügen, können Sie sich auf die Gruppen in Ihren Daten konzentrieren und diese schnell und einfach voneinander unterscheiden.

Sortieren und Filtern sind zwei Methoden, mit denen Sie Daten organisieren, formatieren und anpassen können. Ein Filter kann Ihnen beispielsweise dabei helfen, Fehler oder Ausreißer zu finden, damit Sie diese vor Ihrer Analyse korrigieren oder kennzeichnen können. Ausreißer sind Datenpunkte, die sich stark von ähnlich erhobenen Daten unterscheiden und möglicherweise keine zuverlässigen Werte darstellen. Der Nutzen des Filterns der Daten besteht darin, dass Sie, nachdem Sie Fehler behoben oder Ausreißer identifiziert haben, den Filter entfernen und die Daten wieder in ihre ursprüngliche Organisation zurückversetzen können.

In dieser Lektüre werden Sie sich mit dem Sortieren und Filtern befassen und überlegen, wie sie zusammen verwendet werden können. Außerdem erfahren Sie, wie eine bestimmte Form des Sortierens in einer Pivot-Tabelle durchgeführt wird.

Daten sortieren

Sortieren ist der Prozess, bei dem Daten in eine sinnvolle Reihenfolge gebracht werden, damit sie leichter zu verstehen, zu analysieren und zu visualisieren sind. Es ordnet Ihre Daten auf der Grundlage einer bestimmten Metrik, die Sie auswählen. Sie können Daten in Tabellenkalkulationen, SQL-Datenbanken (wenn Ihr Dataset zu groß für Tabellenkalkulationen ist) und Tabellen in Dokumenten sortieren.

Um Elemente in eine Rangfolge zu bringen oder chronologische Listen zu erstellen, können Sie nach aufsteigender oder absteigender Reihenfolge sortieren. Das Sortieren ordnet die Daten auf sinnvolle Weise und verschafft Ihnen sofortige Statistiken. Das Sortieren hilft Ihnen auch dabei, ähnliche Daten nach einer Klassifizierung zusammenzufassen. Wenn zum Beispiel ein Unternehmen, das Skigebiete entwirft, die von einem Konkurrenten entworfenen Skigebiete bewerten möchte, kann eine Fachkraft für Datenanalyse die konkurrierenden Skigebiete nach Standorten, Pisten, Fläche und anderen Faktoren sortieren. Auf diese Weise können die Designer des Unternehmens die Arten von Skigebieten besuchen, die sie auch entwerfen, und Informationen sammeln, die für ihre eigenen zukünftigen Entwürfe verwendet werden können.

This is aAn example of sorting a spreadsheet of ski resorts, including information about resort name, state/territory/country

Daten filtern

Manchmal wird für eine Analyse nur eine Teilmenge der Daten in Ihrem Dataset benötigt. Sie können einen Filter verwenden, um nur die Daten anzuzeigen, die ein bestimmtes Kriterium erfüllen, während der Rest ausgeblendet wird. Filtern ist nützlich, wenn Sie eine große Menge an Daten haben. Sie können Zeit sparen, indem Sie sich auf die Daten beschränken, die für Ihre aktuelle Analyse wichtig sind, oder auf die Daten, die Fehler enthalten. In den meisten Tabellen und SQL-Datenbanken können Sie Ihre Daten auf vielfältige Weise filtern. Das Filtern gibt Ihnen die Möglichkeit, ohne großen Aufwand das zu finden, wonach Sie suchen.

Wenn ein Unternehmen, das sich mit der Planung von Skigebieten befasst, beispielsweise bestimmte Kriterien für die konkurrierenden Skigebiete, die es besuchen und bewerten möchte, überprüfen möchte, kann eine Fachkraft für Datenanalyse die Datenbank der konkurrierenden Skigebiete filtern, um Informationen über die Anzahl der Pisten im Vergleich zur Anbaufläche zu extrahieren und so Planungstrends oder andere Informationen zu ermitteln.

An example of creating a filter in a spreadsheet of ski resorts
An example of filtering data in a spreadsheet of ski resort information by specific evaluation criteria such as location

Eine Pivot-Tabelle sortieren

Eine Pivot-Tabelle ist ein Tool zur Datenzusammenfassung, mit dem Sie Daten sortieren, reorganisieren, gruppieren, ANZAHLEN, aufsummieren oder MITTELWERTEN können. Die Elemente in den Zeilen- und Spaltenbereichen einer Pivot-Tabelle werden in aufsteigender Reihenfolge nach einer beliebigen benutzerdefinierten Liste zuerst sortiert. Wenn sich die Elemente nicht in einer benutzerdefinierten Liste befinden, werden sie standardmäßig in aufsteigender Reihenfolge sortiert. Wenn Sie jedoch in absteigender Reihenfolge sortieren, richten Sie eine Regel ein, die steuert, wie das Feld sortiert wird, auch nachdem neue Datenpunkte hinzugefügt wurden. Im Dataset Skigebiete können die Orte in der Pivot-Tabelle zum Beispiel alphabetisch nach Bundesland, Region oder Land sortiert werden.

Image of a pivot table of the ski resort data, with the pivot table editor open and ready for parameters to be entered

Die wichtigsten Erkenntnisse

Fachkräfte für Datenanalyse filtern und sortieren Daten, um sie zum besseren Verständnis, zur Analyse und zur Visualisierung zu organisieren. Beim Sortieren werden die Daten in eine sinnvolle Reihenfolge gebracht, während beim Filtern nur Daten angezeigt werden, die bestimmten Kriterien entsprechen. Die Kombination aus Filtern und Sortieren ermöglicht es, nur relevante Daten für die Analyse zu organisieren. Sowohl Tabellen als auch SQL-Datenbanken ermöglichen das Filtern und Sortieren von Daten.

Rückblick: Die ersten Schritte mit BigQuery

Hinweis: Diese Lektüre ist auch in den Kursen 3 und 4 dieses Programms enthalten. Wenn Sie die Kurse der Reihe nach belegen, können Sie sie entweder noch einmal lesen oder mit dem nächsten Kursabschnitt, Upload the movie dataset to BigQuery, fortfahren. Wenn Sie die Kurse 3 oder 4 noch nicht besucht haben, sollten Sie diese Lektüre abschließen, bevor Sie mit dem nächsten Kursabschnitt fortfahren.

BigQuery ist ein Data Warehouse auf der Google Cloud Plattform, mit dem Sie große Datasets abfragen und filtern, Ergebnisse aggregieren und komplexe Operationen durchführen können. In diesem Programm werden Sie BigQuery verwenden, um Ihre SQL-Kenntnisse zu trainieren und Daten zu sammeln, aufzubereiten und zu analysieren. Zu diesem Zeitpunkt haben Sie Ihr eigenes Konto eingerichtet. Lernen Sie nun einige der wichtigen Elemente des SQL-Arbeitsbereichs kennen. Dies wird Sie auf die kommenden Aktivitäten vorbereiten, bei denen Sie BigQuery verwenden werden. Beachten Sie, dass BigQuery seine Schnittstelle häufig aktualisiert, so dass Ihre Konsole möglicherweise etwas anders aussieht als in dieser Lektüre beschrieben. Das ist in Ordnung; nutzen Sie Ihre Fähigkeiten zur Fehlerbehebung, um das zu finden, was Sie brauchen!

Anmelden bei BigQuery

Wenn Sie sich über die Landing Page bei BigQuery anmelden, wird automatisch Ihr Projektraum geöffnet. Dies ist eine Übersicht über Ihr Projekt, einschließlich der Projektinformationen und der aktuell verwendeten Ressourcen. Von hier aus können Sie Ihre jüngsten Aktivitäten überprüfen.

Bigquery project dashboard page

Navigieren Sie zum BigQuery Studio Ihres Projekts, indem Sie BigQuery aus dem Navigationsmenü und BigQuery Studio aus dem Dropdown-Menü auswählen.

BigQuery navigation menu open with the BigQuery Studio option selected.

BiqQuery Studio Komponenten

Sobald Sie vom Projektraum aus zu BigQuery navigiert haben, sind die meisten der wichtigsten Komponenten der BigQuery-Konsole vorhanden: das Navigationsfenster , das Explorer-Fenster und der SQL-Arbeitsbereich.

The BigQuery Console with the three major menus open: the Navigation pane, the Explorer pane, and the SQL Workspace

Der Navigationsbereich

Auf der Konsolenseite finden Sie das Navigationsfenster . Hier können Sie vom Projektbereich zum BigQuery-Tool navigieren. Dieses Menü enthält auch eine Liste anderer Daten-Tools für das Google Cloud Projekt (GCP). In diesem Programm werden Sie sich auf BigQuery konzentrieren, aber es ist nützlich zu verstehen, dass das GCP über eine Sammlung von miteinander verbundenen Tools verfügt, die Datenexperten täglich verwenden.

Das Explorer-Fenster

Das Explorer-Fenster enthält eine Liste Ihrer aktuellen Projekte und aller mit Sternen versehenen Projekte, die Sie Ihrer Konsole hinzugefügt haben. Hier finden Sie auch die Schaltfläche + HINZUFÜGEN, mit der Sie Datasets hinzufügen können.

The + Add button in the Explorer pane.

Mit dieser Schaltfläche öffnen Sie das Dialogfeld Hinzufügen , in dem Sie eine Vielzahl von Datasets öffnen oder importieren können.

The Add dialog, displaying options to search for a data source or add popular or additional data sources.

Öffentliche Datasets hinzufügen

BigQuery bietet eine Vielzahl von öffentlichen Datasets aus dem Google Cloud Public Dataset Programm. Scrollen Sie im Dialogfeld Hinzufügen nach unten zur Option Öffentliche Datasets.

The Public Datasets option in the Add dialog.

Wählen Sie Öffentliche Datasets. Dadurch gelangen Sie zum Public Datasets Marketplace, wo Sie nach öffentlichen Datasets suchen und diese auswählen können, um sie zu Ihrer BigQuery Konsole hinzuzufügen. Suchen Sie zum Beispiel in der Suchleiste des Marktplatzes nach dem Dataset „noaa lightning“. Wenn Sie nach diesem Dataset suchen, finden Sie die Cloud-to-Ground Lightning Strikes Daten der NOAA.

The BigQuery Console showing NOAA’s Cloud to Ground Lightning Strikes as a search result in Datasets.

Wählen Sie das Dataset aus, um seine Beschreibung zu lesen. Wählen Sie Dataset anzeigen, um eine Registerkarte mit den Informationen zu dem Dataset im SQL-Arbeitsbereich zu erstellen.

The noaa_lightning dataset in a tab in the SQL workspace. The SQL workspace displays the dataset’s information.

Öffentliche Datasets starten und untersuchen

Sie haben das öffentliche Dataset noaa_lightning zu Ihrem BigQuery Workspace hinzugefügt, so dass das Explorer-Fenster das Dataset noaa_lightning zusammen mit der Liste der anderen öffentlichen Datasets anzeigt. Diese Datasets sind unter bigquery-public-data verschachtelt. Markieren Sie bigquery-public-data, indem Sie zum oberen Rand des Explorer-Fensters navigieren und den Stern neben bigquery-public-data auswählen.

The bigquery-public-dataset with the star filled in, indicating it has been starred.

Wenn Sie bigquery-public-data mit einem Sternchen versehen, können Sie öffentliche Datasets suchen und hinzufügen, indem Sie im Explorer-Fenster blättern oder in der Explorer-Suchleiste danach suchen.

Sie könnten zum Beispiel ein anderes öffentliches Dataset auswählen wollen. Wenn Sie das zweite Dataset, „austin_311“, auswählen, wird es erweitert, um die darin gespeicherte Tabelle „311_service_requests“ aufzulisten

Wenn Sie eine Tabelle auswählen, werden ihre Informationen im SQL-Arbeitsbereich angezeigt. Wählen Sie die Tabelle 311_service_requests, um mehrere Registerkarten zu sehen, die die Tabelle beschreiben, darunter:

  • Schema, das die Spaltennamen im Dataset anzeigt

  • Details, die zusätzliche Metadaten enthalten, wie z.B. das Erstellungsdatum des Datasets

  • Vorschau, die die ersten Zeilen aus dem Dataset anzeigt

The table preview of the 311_service_requests table with the Schema tab open

Außerdem können Sie die Schaltfläche Abfrage in der Menüleiste des SQL-Arbeitsbereichs auswählen, um diese Tabelle abzufragen.

Der SQL-Arbeitsbereich

Der letzte Menübereich in Ihrer Konsole ist der SQL-Arbeitsbereich. Hier werden Sie die Abfragen in BigQuery schreiben und ausführen.

Blank query editor tab

Über den SQL-Arbeitsbereich haben Sie auch Zugriff auf Ihre persönliche und projektbezogene Geschichte, in der ein Datensatz mit den von Ihnen ausgeführten Abfragen gespeichert ist. Dies kann nützlich sein, wenn Sie zu einer Abfrage zurückkehren möchten, um sie erneut auszuführen oder einen Teil davon in einer anderen Abfrage zu verwenden.

Hochladen Ihrer Daten

BigQuery bietet Ihnen nicht nur Zugang zu öffentlichen Datasets, sondern auch die Möglichkeit, Ihre eigenen Daten direkt in Ihren Arbeitsbereich hochzuladen. Rufen Sie diese Funktion auf, indem Sie das Menü + HINZUFÜGEN erneut öffnen oder indem Sie im Explorer-Fenster auf die drei vertikalen Punkte neben dem Namen Ihres Projekts klicken. Dadurch erhalten Sie die Möglichkeit, Ihr eigenes Dataset zu erstellen und Ihre eigenen Tabellen hochzuladen. Sie werden in einer der nächsten Aktivitäten die Möglichkeit haben, Ihre eigenen Daten hochzuladen, um die Verwendung dieser Funktion zu üben!

Die wichtigsten Erkenntnisse

Mit dem SQL-Arbeitsbereich von BigQuery können Sie nach öffentlichen Datasets suchen, SQL-Abfragen durchführen und sogar Ihre eigenen Daten zur Analyse hochladen. Ganz gleich, ob Sie mit öffentlichen Datasets arbeiten, SQL-Abfragen ausführen oder Ihre eigenen Daten hochladen, der SQL-Arbeitsbereich von BigQuery bietet eine Reihe von Funktionen zur Unterstützung aller Arten von Datenanalyseaufgaben. Während dieses Programms werden Sie BigQuery verwenden, um Ihre SQL-Kenntnisse zu trainieren. Wenn Sie also mit den wichtigsten Komponenten Ihrer BigQuery-Konsole vertraut sind, werden Sie sie in Zukunft effizient nutzen können!

Filtern von Daten mit SQL

Video 161

Daten in Tabellenkalkulationen sortieren

Video 162

Verwenden Sie die Funktion SORT in Tabellenkalkulationen

Video 163

Emma: Die Reise zu einer sinnvollen Karriere

Video 164

Daten mit SQL sortieren

Video 165

Glossarbegriffe aus Modul 1

Begriffe und Definitionen für Kurs 5, Modul 1

ORDER BY: Eine SQL-Klausel, die die in einer Abfrage zurückgegebenen Ergebnisse sortiert

Beginnen Sie mit der Formatierung von Daten

Video 166

Von einem Typ zum anderen

Video 167

Konvertieren von Daten in Tabellenkalkulationen

In dieser Lektüre erfahren Sie mehr über die Konvertierung von Daten von einem Format in ein anderes. Eine der Möglichkeiten, um sicherzustellen, dass Sie eine genaue Analyse Ihrer Daten erhalten, besteht darin, alle Daten in das richtige Format zu bringen. Dies gilt selbst dann, wenn Sie Ihre Daten bereits bereinigt und verarbeitet haben. Um Ihre Daten für die Analyse vorzubereiten, müssen Sie sie zu einem frühen Zeitpunkt des Prozesses konvertieren und formatieren.

A tornado sweeping everything up; an arrow indicating Data Conversion and second image of bar graph, pie chart, line graph

Als Fachkraft für Datenanalyse gibt es viele Szenarien, in denen Sie Daten in einer Tabelle konvertieren müssen:

Zeichenfolge in Datum

  • Wie man in Excel Text in ein Datum konvertiert: Die Umwandlung einer Zahlenreihe in ein Datum ist ein häufiges Szenario, dem Sie begegnen werden. In dieser Ressource erfahren Sie, wie Sie Excel-Funktionen verwenden, um Text und Zahlen in Datumsangaben zu konvertieren, und wie Sie Textzeichenfolgen ohne Formel in Datumsangaben umwandeln können.

  • Google Sheets: Datumsformat ändern: Wenn Sie mit Google Sheets arbeiten, zeigt Ihnen diese Ressource, wie Sie Ihre Textzeichenfolgen in Datumsangaben umwandeln und wie Sie die verschiedenen in Google Sheets verfügbaren Datumsformate anwenden können.

String in Zahlen

  • Wie Sie in Excel Text in Zahlen konvertieren: Auch wenn Sie in Ihrer Tabelle Werte haben, die Zahlen ähneln, handelt es sich dabei nicht unbedingt um Zahlen. Diese Konvertierung ist wichtig, denn sie ermöglicht es, dass Ihre Zahlen addiert und in Excel fehlerfrei in Formeln verwendet werden können.

  • Wie Sie in Google Sheets Text in Zahlen konvertieren: Diese Ressource ist nützlich, wenn Sie mit Google Sheets arbeiten. Sie zeigt Ihnen, wie Sie in Google Sheets Textzeichenfolgen in Zahlen umwandeln können. Sie enthält auch mehrere Formeln, die Sie auf Ihre eigenen Blätter anwenden können, so dass Sie die Methode finden können, die für Sie am besten funktioniert.

Kombinieren von Spalten

  • Konvertieren Sie Text aus zwei oder mehr Zellen: Manchmal müssen Sie vielleicht Text aus zwei oder mehr Zellen zusammenführen. Diese Microsoft Support-Seite zeigt Ihnen zwei verschiedene Möglichkeiten, wie Sie diese Aufgabe erledigen können, ohne dass Ihre Daten verloren gehen oder verändert werden. Sie enthält auch ein Video-Tutorial, das Sie Schritt für Schritt durch den Prozess führt.

  • Wie man Zellen in Google Sheets teilt oder kombiniert: Diese Anleitung zeigt Ihnen, wie Sie Zellen in Google Sheets trennen oder kombinieren können. Wenn Sie Google Sheets verwenden, ist dies eine nützliche Ressource, auf die Sie zurückgreifen können, wenn Sie Zellen kombinieren müssen. Sie enthält ein Beispiel mit echten Daten.

Zahlen in Prozent

  • Zahlen als Prozentsätze formatieren: Die Formatierung von Zahlen als Prozentsätze ist eine nützliche Fähigkeit, die Sie bei jedem Projekt brauchen. Auf dieser Microsoft Support-Seite finden Sie verschiedene Techniken und Tipps, wie Sie Ihre Zahlen als Prozentwerte darstellen können.

  • ZU_PERZENT: Diese Google Sheets-Supportseite zeigt Ihnen, wie Sie mit der Formel TO_PERCENT Zahlen in Prozentwerte umwandeln können. Sie enthält auch Links zu anderen Formeln, die Ihnen bei der Konvertierung von Zeichenketten helfen können.

Profi-Tipp: Denken Sie daran, dass Sie möglicherweise viele Datenspalten haben, die unterschiedliche Formate erfordern. Einheitlichkeit ist der Schlüssel, und am besten stellen Sie sicher, dass eine ganze Spalte das gleiche Format hat.

Zusätzliche Ressourcen

Wenn Sie andere Datentypen konvertieren müssen, finden Sie Ressourcen unter Microsoft Unterstützung für Excel oder Google Docs Editor-Hilfe für Google Sheets.

Die Konvertierung von Daten ist schnell und einfach, und die gleichen Funktionen können immer wieder verwendet werden. Sie können diese Links auch als Lesezeichen speichern, so dass Sie sie immer zur Hand haben, falls eines dieser Probleme auftritt. Jetzt, da Sie wissen, wie man Daten konvertiert, sind Sie auf dem besten Weg, eine erfolgreiche Fachkraft für Datenanalyse zu werden.

Datenvalidierung

Video 168

Bedingte Formatierung

Video 169

Textzeichenfolgen zusammenführen, um Statistiken zu gewinnen

Video 170

Zeichenfolgen in Tabellenkalkulationen

Video 171

Wenn Sie nicht weiterkommen

Video 172

Tipps und Tricks für fortgeschrittene Tabellenkalkulationen

Wie viele andere Dinge, die Sie in diesem Programm lernen, werden auch Tabellenkalkulationen einfacher, je mehr Sie üben. In dieser Lektüre finden Sie eine Liste von Ressourcen, die Ihnen helfen können, Ihr Wissen und Ihre Erfahrung mit Tabellenkalkulationsfunktionen und -funktionen zu erweitern. Ziel ist es, Ihnen Zugang zu einer Vielfalt von fortgeschrittenen Tipps und Tricks zu verschaffen, die Sie bei der Arbeit mit Tabellenkalkulationen zur Datenanalyse effizienter und effektiver machen. Lesen Sie die Beschreibung jeder Ressource unten, klicken Sie auf die Links, um mehr zu erfahren, und speichern Sie die Links, die für Sie nützlich sind, oder setzen Sie ein Lesezeichen. Sie können sofort damit beginnen, alles, was Sie lernen, zu üben, um die Chancen Ihres Verständnisses zu erhöhen und Ihre Vertrautheit mit Tabellenkalkulationen auszubauen. Diese Lektüre bietet eine Reihe von Ressourcen, also schauen Sie sich ruhig die an, die für Sie in Frage kommen, und überspringen Sie die, die es nicht sind.

Google Sheets

  • Tastatur-Verknüpfungen für Google Sheets: Dies ist eine großartige Ressource, um schnell eine Reihe von Tastaturverknüpfungen zu lernen, mit denen Sie regelmäßige Aufgaben schneller und einfacher erledigen können, z.B. die Navigation in Ihrer Tabelle oder den Zugriff auf Formeln und Funktionen. Diese Liste enthält Verknüpfungen für die Desktop- und die mobile Version von Google Sheets, so dass Sie diese unabhängig vom verwendeten Gerät auf Ihre Arbeit anwenden können.

  • Liste der Google Sheets Funktionen: Dies ist eine umfassende Liste der Funktionen und der Syntax von Google Sheets. Jede Funktion ist mit einem Link aufgeführt, über den Sie mehr erfahren können.

  • 23 Google Sheet Formeln, die Sie kennen müssen: Dieser Blogartikel von Layer fasst 20 der nützlichsten Google Sheets Formeln zusammen und beschreibt sie.

  • 18 Google Sheets Formel-Tipps und -Techniken: Hier finden Sie Tipps zur Verwendung von Verknüpfungen in Google Sheets bei der Arbeit mit Formeln.

Excel

  • Tastaturverknüpfungen in Excel: Weiter oben in dieser Liste haben wir Ihnen eine Ressource für Tastaturverknüpfungen in Google Sheets vorgestellt. In ähnlicher Weise bietet diese Ressource eine Liste von Tastaturverknüpfungen in Excel, mit denen Sie regelmäßige Aufgaben in der Tabellenkalkulation effizienter erledigen können. Sie enthält Verknüpfungen für die Desktop- und die mobile Version von Excel, so dass Sie diese unabhängig von der Plattform, auf der Sie arbeiten, anwenden können.

  • 222 Excel-Verknüpfungen: Eine Zusammenstellung von Verknüpfungen mit Links zu ausführlicheren Erklärungen zu ihrer Verwendung. Dies ist eine großartige Möglichkeit, um schnell auf Verknüpfungen zuzugreifen. Die Liste ist nach Funktionen geordnet, so dass Sie direkt zu den Abschnitten gehen können, die für Sie am nützlichsten sind.

  • Liste der Funktionen für Tabellenkalkulationen: Dies ist eine umfassende Liste von Excel-Tabellenfunktionen mit Links zu ausführlicheren Erklärungen. Es lohnt sich, diese Ressource zu speichern, damit Sie häufig darauf zurückgreifen können. Auf diese Weise haben Sie Zugriff auf Funktionen und Beispiele, die Sie bei Ihrer Arbeit anwenden können.

  • Liste der Tabellenkalkulationsformeln: Ähnlich wie die vorherige Ressource enthält diese umfassende Liste von Excel-Tabellenformeln Links zu detaillierteren Erklärungen und kann gespeichert und jederzeit aufgerufen werden, wenn Sie eine Formel für Ihre Analyse benötigen.

  • Grundlegende Excel-Fähigkeiten für die Analyse von Daten: Dieser Blogbeitrag enthält fortgeschrittenere Funktionen einiger Tabellenkalkulations-Tools, die Sie bereits kennen gelernt haben, wie Pivot-Tabellen und bedingte Formatierung. Diese Fähigkeiten haben sich als besonders nützlich für die Datenanalyse erwiesen. Jeder Abschnitt enthält ein Anleitungsvideo, das Sie Schritt für Schritt durch den Prozess der Verwendung dieser Funktionen führt, damit Sie sie auf Ihre eigene Analyse anwenden können.

  • Fortgeschrittene Fähigkeiten in der Tabelle: Die Präsentation von Mark Jhon C. Oxillo beginnt mit einem grundlegenden Überblick über die Tabellenkalkulation, enthält aber auch fortgeschrittene Funktionen und Übungen, die Ihnen helfen, Formeln auf aktuelle Daten in Excel anzuwenden. Dies ist eine gute Möglichkeit, einige grundlegende Konzepte zu wiederholen und die bisher erlernten Fähigkeiten zu üben.

Im Internet finden Sie zahlreiche Ressourcen zu fortgeschrittenen Tipps und Tricks für die Tabellenkalkulation. Sie werden wahrscheinlich selbst neue Ressourcen und Tools entdecken, aber diese Liste ist ein guter Ausgangspunkt, wenn Sie sich mit Tabellenkalkulationen besser vertraut machen wollen.

An image of two hands typing on a keyboard. The desk has a mouse, pencil, and notepad

Layla: Alles über die Analysebühne

Video 173

Glossarbegriffe aus Modul 2

Begriffe und Definitionen für Kurs 5, Modul 2

ROUND: Eine SQL Funktion, die eine Zahl auf eine bestimmte Anzahl von Dezimalstellen gerundet zurückgibt

Daten für die Analyse aggregieren

Video 174

Vorbereiten für SVERWEIS

Video 175

SVERWEIS in Aktion

Video 176

Erkennen und beheben Sie häufige SVERWEIS-Fehler

Video 177

SVERWEIS Kernkonzepte

Funktionen in Tabellen können verwendet werden, um schnell Informationen zu finden und Berechnungen mit bestimmten Werten durchzuführen. VLOOKUP die Funktion Vertikales Nachschlagen ist eine solche Funktion, die vertikal nach einem bestimmten Wert in einer Spalte sucht und eine entsprechende Information zurückgibt. In dieser Lektüre werden Sie die Feinheiten dieser äußerst nützlichen Funktion untersuchen, damit Sie verstehen, wie sie funktioniert, wenn Sie sie zur Analyse von Daten verwenden.

VLOOKUP funktion

VLOOKUP sucht nach einem Suchbegriff, genannt search_key, in einer Spalte einer Tabelle. Wenn der search_key gefunden wird, gibt die Funktion die Daten aus einer anderen Spalte der Zeile zurück, in der er gefunden wurde. VLOOKUP gibt nur den Wert zurück, der dem ersten übereinstimmenden Element entspricht. Wenn es also mehrere übereinstimmende Werte gibt, gibt die Tabelle nur Daten über den ersten zurück.

VLOOKUP anwendungsfälle

Es gibt zwei häufige Gründe, warum Sie VLOOKUP verwenden könnten:
  • Population von Daten in einer Tabelle. Vielleicht verfolgt ein Filialleiter die eingehenden Sendungen vor einem wichtigen Feiertag. Er könnte VLOOKUP verwenden, um Produkt-ID-Codes in einer Produkttabelle nachzuschlagen und die entsprechenden Produktinformationen aus einer anderen Tabelle abzurufen. Auf diese Weise weiß der Manager, wie viele Lageristen er für die Arbeit einplanen muss, wenn die Lieferungen eintreffen.
  • Zusammenführen von Daten aus einer Tabelle mit Daten in einer anderen. Wenn ein Lehrer ein Arbeitsblatt für die Noten und ein anderes für die Anwesenheit seiner Schüler führt, könnte er VLOOKUP verwenden, um die Arbeitsblätter zu kombinieren. Auf diese Weise könnte er nach einem bestimmten Schüler in der Anwesenheitsliste suchen, und VLOOKUP würde den entsprechenden Datensatz in die Notenliste ziehen.

VLOOKUP syntax

VLOOKUP ist sowohl in Microsoft Excel als auch in Google Sheets verfügbar. Hier werden Sie die Syntax in Google Sheets kennenlernen. In den Ressourcen am Ende dieser Lektüre finden Sie weitere Informationen über VLOOKUP in Microsoft Excel. VLOOKUPdie Syntax von Google Sheets lautet:
VLOOKUP(search_key, range, index, is_sorted)
In den folgenden Abschnitten wird jeder der vier Teile der Syntax erläutert.

search_key

Dies ist der Wert, nach dem die Funktion suchen wird. Es kann sich um eine Zahl, eine Textzeichenfolge oder einen Zellbezug handeln.

range

Dies ist der Bereich von Zellen, in dem die Funktion suchen und Informationen zurückgeben soll. Die erste Spalte in range wird durchsucht. Wenn der Schlüssel gefunden wird, wird der Index aus dieser Zeile zurückgegeben. Wenn Sie z.B. nach search_key in Spalte B suchen und die Daten aus Spalte D zurückgeben, müsste der Bereich die Spalten B bis D umfassen, z.B. den Bereich B2:D10. Wenn Sie einen Bereich von A2:D10 angeben würden, würde die Funktion nach dem Suchbegriff in Spalte A suchen. Die search_key muss links von den Informationen stehen, die die Funktion zurückgeben soll. Dies kann dazu führen, dass Sie die Spalten verschieben müssen, bevor Sie VLOOKUP verwenden. Wenn Sie z.B. nach der search_key Spalte D suchen wollen, die Informationen, die die Funktion zurückgeben soll, sich aber in Spalte A befinden, müssen Sie Ihre Spalten neu anordnen, bevor Sie VLOOKUP verwenden.

index

Dies ist die Position der Spalte, die die zurückzugebenden Daten enthält. Die erste Spalte im Bereich ist die Spalte Nummer 1, und jede Spalte wird von rechts nach links durchnummeriert. Wenn der Bereich zum Beispiel B2:D10 ist und Sie einen Wert aus Spalte D zurückgeben möchten, wäre die Indexnummer 3. Wenn der Index nicht zwischen 1 und der Anzahl der Spalten im Bereich liegt, wird die Fehlermeldung #VALUE! zurückgegeben.

is_sorted

Dies gibt an, ob eine ungefähre oder exakte Übereinstimmung zurückgegeben werden soll. Wenn Sie z.B. nach Google suchen, dann würde google nicht als Treffer zählen.
  • Um einen genauen Treffer zu erhalten, setzen Sie is_sorted auf FALSE. Dies wird empfohlen.
  • Um eine ungefähre Übereinstimmung zu erhalten, setzen Sie is_sorted auf TRUE. Die nächstliegende Übereinstimmung (kleiner oder gleich search_key) wird zurückgegeben. Um mit dieser Option genaue Ergebnisse zu erhalten, müssen Sie Ihre Daten in aufsteigender Reihenfolge sortieren. Aber Sie könnten trotzdem einen Wert finden.
  • Wenn weder TRUE noch FALSE ausgewählt sind, wird die Funktion standardmäßig auf TRUE zurückgesetzt.

Der Fehler #N/A

#N/A zeigt an, dass kein passender Wert zurückgegeben werden kann, da keine Übereinstimmungen gefunden wurden.

Die wichtigsten Erkenntnisse

Verwenden Sie VLOOKUP, um nach einem Wert in einer Spalte zu suchen und eine entsprechende Information zurückzugeben. Es ist ein sehr nützliches Tool für Datenexperten, da es ihnen ermöglicht, Daten aus verschiedenen Quellen zu kombinieren und schnell Informationen zu finden. Denken Sie daran, dass die Spalte, die mit der search_key in einer VLOOKUP Formel übereinstimmt, auf der linken Seite der Daten stehen sollte. Der Bereich muss sowohl die gesuchte Spalte als auch die Spalte enthalten, die die zurückgegebenen Informationen enthält. TRUE bedeutet eine ungefähre Übereinstimmung und FALSE eine exakte Übereinstimmung auf search_key.

SVERWEIS-Ressourcen für Microsoft Excel

VLOOKUP können sich in Microsoft Excel geringfügig unterscheiden, aber die Gesamtkonzepte können dennoch allgemein angewendet werden. Schauen Sie sich die folgenden Ressourcen an, wenn Sie mit Excel arbeiten:

Entdecken Sie, wie JOINs funktionieren

Video 178

Geheime Identitäten: Die Bedeutung von Aliasen

Art der JOINs

Es gibt vier allgemeine Arten, JOINs in SQL-Abfragen zu verwenden: INNER, LEFT, RIGHT, und FULL OUTER.

4 venn diagrams illustrating JOINs

 

In dieser Lektüre erfahren Sie, wie Sie mit Aliasing Ihre SQL-Abfragen vereinfachen können. Aliase werden in SQL-Abfragen verwendet, um temporäre Namen für eine Spalte oder Tabelle zu erstellen. Aliases vereinfachen die Referenzierung von Tabellen und Spalten in Ihren SQL-Abfragen, wenn Sie Tabellen- oder Spaltennamen haben, die zu lang oder zu komplex sind, um sie in Abfragen verwenden zu können. Stellen Sie sich einen Tabellennamen wie special_projects_customer_negotiation_mileages vor. Das wäre schwierig, jedes Mal, wenn Sie diese Tabelle verwenden, neu einzugeben. Mit einem Alias können Sie einen aussagekräftigen Spitznamen erstellen, den Sie für Ihre Analyse verwenden können. In diesem Fall kann special_projects_customer_negotiation_mileages einfach zu mileage umbenannt werden. Anstatt den langen Tabellennamen ausschreiben zu müssen, können Sie einen aussagekräftigen Spitznamen verwenden, den Sie selbst festlegen.

Grundlegende Syntax für Aliasing

Aliasing ist der Prozess der Verwendung von Aliasen. In SQL-Abfragen werden Aliases mit Hilfe des Befehls AS implementiert. Die grundlegende Syntax für den Befehl AS ist in der folgenden Abfrage zum Aliasing einer Tabelle zu sehen:

SELECT column_name(s)
FROM table_name AS alias_name;
 
Beachten Sie, dass AS der Tabellenname vorangestellt wird, gefolgt von dem neuen Spitznamen. Dies ist ein ähnlicher Ansatz wie beim Aliasing einer Spalte:
 
SELECT column_name AS alias_name
FROM table_name;

In beiden Fällen haben Sie nun einen neuen Namen, mit dem Sie auf die Spalte oder Tabelle verweisen können, die mit einem Alias versehen wurde.

Alternative Syntax für Aliases

Wenn die Verwendung von AS beim Ausführen einer Abfrage zu einem Fehler führt, weil die SQL-Datenbank, mit der Sie arbeiten, dies nicht unterstützt, können Sie es weglassen. In den vorherigen Beispielen wäre die alternative Syntax für das Aliasing einer Tabelle oder Spalte wie folgt:

  • FROM table_name alias_name

  • SELECT column_name alias_name

Der Schlüssel ist, dass Abfragen mit oder ohne AS für Aliasing ausgeführt werden können, aber die Verwendung von AS hat den Vorteil, dass die Abfragen besser lesbar sind. Es hilft, die Aliase deutlicher hervorzuheben.

Aliasing in Aktion

Sehen wir uns ein Beispiel für eine SQL-Abfrage an, die Aliasing verwendet. Nehmen wir an, Sie arbeiten mit zwei Tabellen: eine davon enthält Mitarbeiterdaten und die andere Abteilungsdaten. Die FROM Anweisung, um diese Tabellen zu aliasieren, könnte lauten:

FROM work_day.employees AS employees
 

Mit diesen Aliasen wissen Sie immer noch genau, was sich in diesen Tabellen befindet, aber jetzt müssen Sie diese langen Tabellennamen nicht mehr manuell eingeben. Aliases können bei langen, komplizierten Abfragen sehr hilfreich sein. Es ist einfacher, Ihre Abfragen zu lesen und zu schreiben, wenn Sie Aliasnamen haben, die Ihnen sagen, was in Ihren Tabellen enthalten ist.

Für weitere Informationen

Wenn Sie daran interessiert sind, mehr über Aliasing zu erfahren, finden Sie hier einige Ressourcen, die Ihnen den Einstieg erleichtern:

  • SQL-Aliasing: Dieses Tutorial über Aliasing ist eine wirklich nützliche Ressource, wenn Sie anfangen, selbst Abfragen zu schreiben und Tabellen mit Aliasen zu versehen. Es wird auch gezeigt, wie Aliasing mit echten Tabellen funktioniert.

  • SQL Alias: Diese detaillierte Einführung in Aliasing enthält mehrere Beispiele. Dies ist eine weitere gute Quelle, wenn Sie weitere Beispiele benötigen.

  • Verwendung von Column Aliasing: Dieser Leitfaden befasst sich speziell mit dem Aliasing von Spalten. In der Regel werden Sie ganze Tabellen aliasieren, aber wenn Sie nur eine Spalte aliasieren müssen, ist dies eine hervorragende Ressource, die Sie als Lesezeichen speichern sollten.

 

Abfragen innerhalb von Abfragen

Video 179

SQL-Funktionen und Unterabfragen: Eine funktionale Freundschaft

Wie Sie bereits gelernt haben, sind SQL Funktionen Tools, die in SQL eingebaut sind, um die Durchführung von Berechnungen zu erleichtern. Sie könnten zum Beispiel die Funktion AVG() verwenden, um den MITTELWERT der Mitarbeiter in einer Tabelle zu berechnen, damit das Management weiß, was für das nächste Jahr budgetiert werden soll. Ein anderes Beispiel wäre die Funktion COUNT(), mit der Sie die Anzahl der Bestellungen in einer Tabelle zählen, um den täglichen Auftragsbestand zu verfolgen.

Eine Unterabfrage, auch innere oder verschachtelte Abfrage genannt, ist eine SQL-Abfrage, die innerhalb einer größeren Abfrage verschachtelt ist. Um auf das vorherige Beispiel zurückzukommen, könnten Sie eine Unterabfrage zu Ihrer Durchschnittsberechnung hinzufügen, um die Namen der Mitarbeiter zu ermitteln, die mehr oder weniger als das Durchschnittsgehalt verdienen, um diese Informationen in die Leistungsbeurteilung einzubeziehen. Mit Unterabfragen lassen sich komplexere Fragen in einer einzigen Abfrage beantworten, was die Datenabfrage effizienter macht. In dieser Lektüre lernen Sie SQL-Funktionen kennen und erfahren, wie diese mit Unterabfragen verwendet werden können.

Wie funktionieren die SQL-Funktionen?

SQL-Funktionen ermöglichen die Datenaggregation. Zur Auffrischung: Datenaggregation ist der Prozess des Sammelns von Daten aus mehreren Quellen, um sie in einer einzigen, zusammengefassten Sammlung zu kombinieren. Nehmen Sie sich einen Moment Zeit, um sich einige dieser Funktionen anzusehen, damit Sie besser verstehen, wie Sie diese Abfragen ausführen können:

  • HAVING: Die HAVING Klausel filtert die Ergebnisse einer SQL-Abfrage anhand von Bedingungen, die nach der Gruppierung angewendet werden. In der HAVING-Übersicht von W3School finden Sie ein Tutorial zu dieser Klausel

  • CASE CASE bietet bedingte Logik in SQL-Abfragen, ähnlich einer ‚if-else‘-Struktur in Programmiersprachen. In der CASE-Übersicht der W3School wird die Verwendung der Anweisung und deren Funktionsweise erläutert. CASE

  • IF: IFführt einen einfachen Bedingungstest durch und gibt je nach Ergebnis einen Wert zurück. In der IF-Übersicht der W3School finden Sie eine Anleitung für die Funktion IF und Beispiele, mit denen Sie üben können.

  • COUNTCOUNT führt einen einfachen bedingten Test durch und gibt einen Wert zurück, der vom Ergebnis abhängt. Auch wenn sie einfach erscheint, ist die Funktion genauso wichtig wie alle anderen. In COUNT der Übersicht ANZAHL der W3School finden Sie eine Anleitung und Beispiele.

Unterabfragen

Unterabfragen können Projekte einfacher und effizienter machen, indem sie es ermöglichen, komplexe Operationen in einer einzigen Abfrage durchzuführen, so dass nicht mehr so oft auf die Datenbank zugegriffen werden muss. Unterabfragen machen Ihren Code außerdem lesbarer und leichter wartbar. Nehmen wir das bereits erwähnte Beispiel der Mitarbeitergehälter: Die ursprüngliche Abfrage diente dazu, das durchschnittliche Mitarbeitergehalt zu ermitteln. Wenn Sie eine Unterabfrage hinzufügen, können Sie dies herausfinden und außerdem Mitarbeiter identifizieren, die mehr als den Durchschnitt verdienen – alles in einer einzigen Abfrage.

Normalerweise finden Sie Unterabfragen verschachtelt in den Klauseln SELECT, FROM und/oder WHERE. Es gibt keine allgemeine Syntax für Unterabfragen, aber die Syntax für eine einfache Unterabfrage folgt einem ähnlichen Muster:

SELECT account_table.*
FROM (
SELECT*
FROMtransaction.sf_model_feature_2014_01
WHERE day_of_week =’Friday‘
) account_table
WHERE account_table.availability=’YES‘

Im Grunde gibt es eine weitere SELECT Klausel innerhalb der ersten SELECT Klausel. Die zweite SELECT Klausel markiert den Beginn der Unterabfrage in dieser Anweisung. Es gibt viele verschiedene Möglichkeiten, wie Sie Unterabfragen verwenden können, aber es gibt ein paar Regeln, die Sie beachten sollten:

  • Unterabfragen müssen in Klammern eingeschlossen werden.

  • Eine Unterabfrage kann eine oder mehrere Spalten haben, die in der SELECT Klausel angegeben sind.

  • Unterabfragen, die mehr als eine Zeile zurückgeben, können nur mit Mehrfachwert-Operatoren verwendet werden, wie z.B. dem IN Operator, mit dem Sie mehrere Werte in einer WHERE Klausel angeben können.

  • Eine Unterabfrage kann nicht in einen SET Befehl verschachtelt werden. Der Befehl SET wird mit UPDATE verwendet, um anzugeben, welche Spalten (und Werte) in einer Tabelle aktualisiert werden sollen.

Zusätzliche Ressourcen

Die folgenden Ressourcen bieten weitere Anleitungen zu Unterabfragen und deren Verwendung:

  • SQL Unterabfragen: Diese ausführliche Einführung enthält die Definition einer Unterabfrage, ihren Zweck in SQL, wann und wie sie zu verwenden ist und was die Ergebnisse sein werden.

  • Schreiben von Unterabfragen in SQL: Lernen Sie die Grundlagen von Unterabfragen in diesem interaktiven Lernprogramm kennen, einschließlich Beispielen und Übungsproblemen, die Sie durcharbeiten können.

Wenn Sie mehr über die Verwendung von SQL, Funktionen und Unterabfragen lernen, werden Sie feststellen, wie viel Zeit Sie wirklich sparen können, wenn Sie sich diese Tipps und Tricks merken.

An image of two people giving each other a high five while smiling
 

Justin: Wohin Sie die Datenanalyse führt

Video 180

Glossarbegriffe aus Modul 3

Begriffe und Definitionen für Kurs 5, Modul 3

Absoluter Bezug: Eine Referenz innerhalb einer Funktion, die gesperrt ist, so dass sich Zeilen und Spalten nicht ändern, wenn die Funktion kopiert wird

Aggregation: Der Prozess des Sammelns oder Zusammenfassens vieler einzelner Teile zu einem Ganzen

Aliasing: Vorübergehende Benennung einer Tabelle oder Spalte in einer Abfrage, um sie leichter lesen und schreiben zu können

COUNT DISTINCT: Eine SQL Funktion, die nur die unterschiedlichen Werte in einem bestimmten Bereich zurückgibt

Datenaggregation: Der Prozess, bei dem Daten aus mehreren Quellen gesammelt und zu einer einzigen, zusammengefassten Sammlung kombiniert werden

INNER JOIN : Eine SQL-Funktion, die Datensätze mit übereinstimmenden Werten in beiden Tabellen zurückgibt

JOIN : Eine SQL Funktion, die dazu dient, Zeilen aus zwei oder mehr Tabellen auf der Grundlage einer verwandten Spalte zu kombinieren

LEFT JOIN : Eine SQL Funktion, die alle Datensätze aus der linken Tabelle und nur die passenden Datensätze aus der rechten Tabelle zurückgibt

LIMIT: Eine SQL-Klausel, die die maximale Anzahl von Datensätzen angibt, die in einer Abfrage zurückgegeben werden

VERGLEICH: Eine Tabellenkalkulationsfunktion, die verwendet wird, um die Position eines bestimmten Nachschlagewertes zu finden

OUTER JOIN : Eine SQL-Funktion, die RIGHT und LEFT JOIN kombiniert, um alle übereinstimmenden Datensätze in beiden Tabellen zurückzugeben

RIGHT JOIN : Eine SQL-Funktion, die alle Datensätze aus der rechten Tabelle und nur die übereinstimmenden Datensätze aus der linken Tabelle zurückgibt.

Unterabfrage: Eine SQL-Abfrage, die innerhalb einer größeren Abfrage verschachtelt ist

WERT: Eine Funktion in einer Tabelle, die eine Textzeichenfolge, die eine Zahl darstellt, in einen numerischen Wert umwandelt

Daten Berechnungen

Video 181

Allgemeine Berechnungsformeln

Video 182

Funktionen und Bedingungen

Video 183

Funktionen mit mehreren Bedingungen

Wie Sie bereits gelernt haben, führen bedingte Funktionen und Formeln Berechnungen in Abhängigkeit von bestimmten Bedingungen durch. Außerdem funktionieren Funktionen wie SUMIF und COUNTIF nur in Fällen, in denen es eine Bedingung gibt. Wenn Sie jedoch mehr als eine Bedingung haben, müssen Sie stattdessen die Funktion SUMIFS oder COUNTIFS verwenden. Mit diesen Funktionen können Sie Berechnungen durchführen, wenn Sie zwei oder mehr Bedingungen haben. In dieser Lektüre erfahren Sie mehr über bedingte Funktionen und die Konstruktion von Funktionen mit mehreren Bedingungen, indem Sie deren grundlegende Syntax kennenlernen und sich ein Beispiel ansehen. Sie werden auch auf Ressourcen für ähnliche Funktionen in Excel zugreifen können.

SUMMEWENN zu SUMMEWENN

Zuvor haben Sie gelernt, dass die Funktion SUMIF Werte in einem bestimmten Bereich auf der Grundlage einer einzigen Bedingung addiert. Die grundlegende Syntax lautet =SUMIF(range, criterion, sum_range).

Der erste Bereich ist der Bereich, in dem die Funktion nach der von Ihnen festgelegten Bedingung suchen wird. Das Kriterium ist die Bedingung, die Sie anwenden, und der Bereich sum_range ist der Bereich der Zellen, die in die Berechnung einbezogen werden sollen. In einer Ressourcenerfassung könnten Sie beispielsweise SUMIF verwenden, um die Gesamtausgaben für eine bestimmte Kategorie, wie z.B. Reisekosten, innerhalb eines bestimmten Monats zu berechnen.

Oder Sie könnten den Gesamtumsatz für Produkte zur Kraftstoffaufbereitung für Kraftfahrzeuge ermitteln – in dieser Tabelle ist ProduktA der hochoktanige Kraftstoff und ProduktB der normaloktanige. Tabelle 1 enthält Spalten für Produkt, Region, Quartal und Umsatz.

Spreadsheet showing sales of Product A and Product B by region, quarter and sales volume

Sie könnten SUMIF verwenden, um den Gesamtumsatz für Produkt A mit einer Formel wie dieser zu berechnen:

=SUMIF(A2:A8, „ProductA“, D2:D8)

Sie können aber auch mehrere Bedingungen einbauen, indem Sie die Funktion SUMIFS verwenden. SUMIF und SUMIFS sind sich sehr ähnlich: Sie addieren die Werte in einem Bereich. Aber SUMMEWENN kann mehrere Bedingungen enthalten. Dadurch haben Sie mehr Kontrolle über Ihre Summierungskriterien, was Ihnen wiederum ermöglicht, komplexere Datenanalysen einfach durchzuführen.

Die grundlegende Syntax lautet: =SUMIFS(sum_range, criteria_range1, criterion1, [criteria_range2, criterion2, …])

Die eckigen Klammern weisen Sie darauf hin, dass dies optional ist. Die Ellipse am Ende der Anweisung ermöglicht so viele Wiederholungen dieser Parameter wie nötig. Wenn Sie z.B. die Summe der Verkäufe für ProduktA im Bezirk Ost im ersten Quartal berechnen möchten, könnten Sie eine SUMIFS -Anweisung mit mehreren Bedingungen erstellen, etwa so:

=SUMIFS(D2:D8, A2:A8, „ProductA“, B2:B8, „East“, C2:C8, „Q1“)

In diesem Beispiel ist B2:B8 der zweite criterion_range und East die zweite Bedingung. Der dritte kriterium_bereich ist C2:C8 und die dritte Bedingung ist Q1. Solange Sie sich an die grundlegende Syntax halten, können Sie bis zu 127 Bedingungen in eine SUMIFS -Anweisung einfügen!

COUNTIF zu COUNTIFS

Genau wie bei der Funktion SUMIFS können Sie mit COUNTIFS eine Funktion COUNTIF mit mehreren Bedingungen erstellen. Die Definition für COUNTIF ist eine Funktion, die die Anzahl der Zellen in einem Bereich zählt, die eine einzelne Bedingung erfüllen. Verwenden Sie z.B. COUNTIF, um die Anzahl der Tage zu verfolgen, an denen ein Mitarbeiter in einem A-Eintrag abwesend war.

Die grundlegende Syntax lautet: =COUNTIF(range, criterion)

Genau wie bei SUMIF legen Sie den Bereich und dann die Bedingung fest, die erfüllt werden muss. Wenn Sie z.B. in Tabelle 1 die Anzahl der Transaktionen für ProduktA zählen wollten, könnten Sie eine Funktion COUNTIF wie diese verwenden:

=COUNTIF(A2:A8, „ProductA“)

COUNTIFS hat die gleiche grundlegende Syntax wie SUMIFS: =COUNTIFS(criteria_range1, criterion1, [criteria_range2, criterion2, …])

Der Kriterienbereich und das Kriterium stehen in der gleichen Reihenfolge, und Sie können am Ende der Funktion weitere Bedingungen hinzufügen. Wenn Sie also die Anzahl der Verkaufstransaktionen für ProduktA in der Region Ost im ersten Quartal ermitteln möchten, könnten Sie COUNTIFS verwenden, um diese Bedingungen anzuwenden, etwa so:

=COUNTIFS(A2:A8, „ProductA“, B2:B8, „East“, C2:C8, „Q2“)

Auf diese Weise können Sie alle Fälle finden, in denen beide Bedingungen (Ost und Q1) zutreffen.

Für weitere Informationen

SUMIFS und COUNTIFS sind nur zwei Beispiele für Funktionen mit mehreren Bedingungen. Sie zeigen, wie mehrere Bedingungen in die grundlegende Syntax einer Funktion eingebaut werden können. Es gibt noch weitere Funktionen mit mehreren Bedingungen, die Sie in Ihrer Datenanalyse verwenden können, und viele Ressourcen, die online verfügbar sind, um Ihnen den Einstieg zu erleichtern:

  • So verwenden Sie die Excel IFS-Funktion: Hier finden Sie eine Erklärung und ein Beispiel für die Funktion IFS in Excel. Es ist eine großartige Referenz, wenn Sie daran interessiert sind, mehr über IFS zu erfahren. Das Beispiel ist nützlich, um diese Funktion und ihre Verwendung zu verstehen.

  • SVERWEIS in Excel mit mehreren Kriterien: Ähnlich wie die vorherige Ressource geht diese Ressource detaillierter darauf ein, wie Sie VLOOKUP mit mehreren Kriterien verwenden können. Die Fähigkeit, VLOOKUP mit mehreren Kriterien anzuwenden, ist eine nützliche Fähigkeit, also sehen Sie sich diese Ressource an, um mehr darüber zu erfahren, wie Sie diese Funktion auf Ihre eigenen Tabellen-Daten anwenden können.

  • INDEX und VERGLEICH in Excel mit mehreren Kriterien: Diese Ressource erklärt, wie Sie die Funktionen INDEX und MATCH mit mehreren Kriterien verwenden können. Sie enthält auch ein Beispiel, das zeigt, wie diese Funktionen mit mehreren Kriterien und tatsächlichen Daten funktionieren.

  • Verwendung von IF mit AND-, OR- und NOT-Funktionen in Excel: Diese Ressource kombiniert WENN mit UND-, ODER- und NICHT-Funktionen, um komplexere Funktionen zu erstellen. Durch die Kombination dieser Funktionen können Sie Ihre Aufgaben effizienter erledigen und mehr Kriterien auf einmal abdecken.

Zusammengesetzte Funktionen

Video 184

Arbeiten Sie mit Pivot-Tabellen

Video 185

Pivot-Tabellen Fortsetzung

Video 186

Elemente einer Pivot-Tabelle

Sie haben bereits gelernt, dass eine Pivot-Tabelle ein Tool ist, mit dem Sie Daten in Tabellen sortieren, reorganisieren, gruppieren, ANZAHLEN, aufsummieren oder den Durchschnitt bilden können. In dieser Lektüre erfahren Sie mehr über die Bestandteile einer Pivot-Tabelle und wie Fachkräfte für Datenanalyse sie verwenden, um Daten zusammenzufassen und Fragen zu ihren Daten zu beantworten.

Pivot-Tabellen ermöglichen es, Daten auf verschiedene Arten zu betrachten, um Statistiken und Trends zu erkennen. Sie können Ihnen helfen, schnell einen Sinn in größeren Datensätzen zu finden, indem Sie Metriken vergleichen, Berechnungen durchführen und Berichte erstellen. Sie sind auch nützlich, um spezifische Fragen zu Ihren Daten zu beantworten.

Eine Pivot-Tabelle besteht aus vier grundlegenden Teilen: Zeilen, Spalten, Werte und Filter.

Die Zeilen einer Pivot-Tabelle organisieren und gruppieren die Daten, die Sie horizontal auswählen. Zum Beispiel, in der Arbeiten mit Pivot-Tabellen beginnen video wurden die Werte für das Veröffentlichungsdatum verwendet, um Zeilen zu erstellen, die die Daten nach Jahr gruppieren.

In den Spalten werden die Werte aus Ihren Daten vertikal organisiert und angezeigt. Ähnlich wie Zeilen können auch Spalten direkt aus dem Datensatz gezogen oder mit Hilfe von Werten erstellt werden. Werte werden verwendet, um Daten zu berechnen und zu zählen. Hier geben Sie die Variablen ein, die Sie messen möchten. Auf diese Weise erstellen Sie auch berechnete Felder in Ihrer Pivot-Tabelle. Zur Auffrischung: Ein berechnetes Feld ist ein neues Feld in einer Pivot-Tabelle, das bestimmte Berechnungen auf der Grundlage der Werte anderer Felder durchführt

Im vorangegangenen Filmdaten-Beispiel hat der Werte-Editor Spalten für die Pivot-Tabelle erstellt, darunter die Spalten SUM of Box Office Umsatz, die AVERAGE of Box Office Umsatz und die COUNT of Box Office Umsatz.

 

Der Bereich Filter einer Pivot-Tabelle schließlich ermöglicht es Ihnen, Filter auf der Grundlage bestimmter Kriterien anzuwenden – genau wie Filter in normalen Tabellenkalkulationen! Zum Beispiel wurde der Pivot-Tabelle für Filmdaten ein Filter hinzugefügt, so dass sie nur Filme enthält, die weniger als 10 Millionen Dollar Umsatz erzielt haben.

Wenn Sie in der Lage sind, alle vier Teile des Pivot-Tabellen-Editors zu verwenden, können Sie verschiedene Metriken aus Ihren Daten vergleichen und Berechnungen durchführen, die Ihnen helfen, wertvolle Statistiken zu gewinnen.

Pivot-Tabellen für die Analyse verwenden

Pivot-Tabellen können ein nützliches Werkzeug sein, um spezifische Fragen zu einem Dataset zu beantworten, so dass Sie die Antworten schnell mit Stakeholdern teilen können. Ein Beispiel: Eine Fachkraft für Datenanalyse, die in einem Kaufhaus arbeitet, wurde gebeten, den Gesamtumsatz für jede Abteilung und die Anzahl der jeweils verkauften Produkte zu ermitteln. Er war auch daran interessiert, genau zu wissen, welche Abteilung den größten Umsatz erzielte.

Anstatt Änderungen an den ursprünglichen Daten der Tabelle vorzunehmen, wurde eine Pivot-Tabelle verwendet, um diese Fragen zu beantworten und die Umsätze und die Anzahl der verkauften Produkte der einzelnen Abteilungen zu vergleichen.

Sie verwendeten die Abteilung als Zeilen für diese Pivot-Tabelle, um die restlichen Verkaufsdaten zu gruppieren und zu organisieren. Dann gaben sie zwei Werte als Spalten ein: die SUMME des Umsatzes und eine ANZAHL der verkauften Produkte. Sie haben die Daten auch nach der Spalte SUMME des Umsatzes sortiert, um festzustellen, welche Abteilung den meisten Umsatz erzielt hat.

Jetzt wissen sie, dass die Spielzeugabteilung den größten Umsatz erzielt hat!

Die wichtigsten Erkenntnisse

Pivot-Tabellen sind ein effektives Werkzeug für Fachkräfte für Datenanalyse, die mit Tabellen arbeiten, denn sie heben wichtige Schlüssel-Einsichten aus den Daten der Tabelle hervor, ohne dass Sie Änderungen an der Tabelle vornehmen müssen. In Kürze werden Sie Ihre eigene Pivot-Tabelle erstellen, um Daten zu analysieren und Trends zu erkennen, die für Stakeholder von großem Wert sind.

Pivot-Tabellen in der Analyse verwenden

In dieser Lektüre erfahren Sie, wie Sie Pivot-Tabellen für die Datenanalyse erstellen und verwenden können. Außerdem erhalten Sie einige Ressourcen über Pivot-Tabellen, die Sie als Referenz speichern können, wenn Sie selbst Pivot-Tabellen erstellen. Pivot-Tabellen sind ein Tool für Tabellenkalkulationen, mit dem Sie Daten auf verschiedene Arten betrachten können, um Statistiken und Trends zu ermitteln.

Mit Pivot-Tabellen können Sie große Datensätze sinnvoll nutzen, indem Sie Tools zum einfachen Vergleich von Metriken, zur schnellen Durchführung von Berechnungen und zur Erstellung lesbarer Berichte erhalten. Sie können eine Pivot-Tabelle erstellen, die Ihnen hilft, spezifische Fragen zu Ihren Daten zu beantworten. Wenn Sie beispielsweise Umsatzdaten analysieren, können Sie Pivot-Tabellen verwenden, um Fragen wie „In welchem Monat wurden die meisten Umsätze erzielt?“ und „Mit welchen Produkten wurde in diesem Jahr der größte Umsatz erzielt?“ zu beantworten Wenn Sie Antworten auf Fragen zu Ihren Daten benötigen, helfen Ihnen Pivot-Tabellen dabei, das Durcheinander zu durchbrechen und sich nur auf die Daten zu konzentrieren, die Sie benötigen.

Erstellen Sie Ihre Pivot-Tabelle

Bevor Sie die Daten mit Pivot-Tabellen analysieren können, müssen Sie eine Pivot-Tabelle mit Ihren Daten erstellen. Im Folgenden finden Sie die Schritte zur Erstellung einer Pivot-Tabelle in Google Sheets, aber die meisten Programme für Tabellenkalkulationen verfügen über ähnliche Tools.

Öffnen Sie zunächst das Menü Einfügen in der Symbolleiste; dort finden Sie eine Option für Pivot-Tabelle.

Dieses Popup-Menü wird angezeigt:

Screenshot of pop-up menu titled Create pivot table.

In der Regel sollten Sie ein neues Blatt für Ihre Pivot-Tabelle erstellen, um Ihre Rohdaten und Ihre Analyse getrennt zu halten. Außerdem können Sie so alle Ihre Berechnungen an einem Ort speichern und leicht nachschlagen. Sobald Sie Ihre Pivot-Tabelle erstellt haben, steht Ihnen rechts neben Ihren Daten ein Pivot-Tabellen-Editor zur Verfügung.

Screenshot of pivot table editor. There are options to add rows, columns, values, and filters

 

Hier können Sie Ihre Pivot-Tabelle anpassen, einschließlich der Variablen, die Sie in Ihre Analyse aufnehmen möchten.

Verwendung Ihrer Pivot-Tabelle für Analysen

Mit Ihren Pivot-Tabellen können Sie eine Vielzahl von Analyseaufgaben durchführen, um schnell aussagekräftige Statistiken aus Ihren Daten zu erstellen. Dazu gehören Berechnungen, Sortieren und Filtern Ihrer Daten. Im Folgenden finden Sie eine Liste mit Online-Ressourcen, die Ihnen helfen, grundlegende Berechnungen in Pivot-Tabellen durchzuführen, sowie Ressourcen zum Sortieren und Filtern von Daten in Ihren Pivot-Tabellen.

Berechnungen durchführen

Microsoft Excel

Google Sheets

Berechnen Sie Werte in einer Pivot-Tabelle: Einführung des Microsoft Supports in Berechnungen in Pivot-Tabellen in Excel. Dies ist ein nützlicher Ausgangspunkt, wenn Sie lernen möchten, wie man Berechnungen mit Pivot-Tabellen speziell in Excel durchführt.

Pivot-Tabellen erstellen und verwenden: Dieser Leitfaden konzentriert sich auf die Verwendung von Pivot-Tabellen in Google Sheets und enthält Anweisungen zum Erstellen von berechneten Feldern. Diese Kurzanleitung können Sie speichern und als schnelle Gedächtnisstütze für das Hinzufügen von berechneten Feldern verwenden.

Beispiel für ein berechnetes Feld in einer Pivot-Tabelle: Diese Ressource enthält ein detailliertes Beispiel für eine Pivot-Tabelle, die für Berechnungen verwendet wird. Dieser schrittweise Prozess veranschaulicht, wie berechnete Felder funktionieren, und vermittelt Ihnen eine Vorstellung davon, wie sie für Analysen verwendet werden können.

Alles über berechnete Felder in Pivot-Tabellen: Dies ist ein umfassender Leitfaden zu berechneten Feldern für Google Sheets. Wenn Sie mit Sheets arbeiten und daran interessiert sind, mehr über Pivot-Tabellen zu erfahren, ist dies eine hervorragende Ressource.

Berechnete Felder in Pivot-Tabellen: Schritt-für-Schritt-Anleitung: Diese Anleitung zur Erstellung Ihrer eigenen berechneten Felder in Pivot-Tabellen ist eine wirklich nützliche Ressource, die Sie speichern und als Lesezeichen speichern sollten, wenn Sie beginnen, berechnete Felder in Ihren eigenen Tabellen anzuwenden.

Pivot-Tabellen in Google Sheets: Dieser Leitfaden für Einsteiger behandelt die Grundlagen von Pivot-Tabellen und berechneten Feldern in Google Sheets und veranschaulicht diese Konzepte anhand von Beispielen und How-to-Videos.

Sortieren Sie Ihre Daten

Microsoft Excel

Google Sheets

Daten in einer Pivot-Tabelle oder einem PivotChart sortieren: Dies ist eine Microsoft Support-Anleitung zum Sortieren von Daten in Pivot-Tabellen. Dies ist eine nützliche Referenz, wenn Sie mit Excel arbeiten und daran interessiert sind, zu sehen, wie das Filtern in Excel konkret aussieht.

Anpassen einer Pivot-Tabelle: Diese Anleitung vom Google Support konzentriert sich auf das Sortieren von Pivot-Tabellen in Google Sheets. Dies ist eine nützliche Kurzreferenz, wenn Sie mit dem Sortieren von Daten in Sheets arbeiten und eine Schritt-für-Schritt-Anleitung benötigen.

Pivot-Tabellen – Daten sortieren: Dieses Tutorial zum Sortieren von Daten in Pivot-Tabellen enthält ein Beispiel mit echten Daten, das zeigt, wie das Sortieren in Excel Pivot-Tabellen funktioniert. Anhand dieses Beispiels können Sie den gesamten Prozess von Anfang bis Ende nachvollziehen.

Wie man Pivot-Tabellen-Spalten sortiert: In dieser ausführlichen Anleitung wird anhand echter Daten gezeigt, wie der Prozess des Sortierens in Google Sheet Pivot-Tabellen funktioniert. Dies ist eine hervorragende Ressource, wenn Sie eine etwas ausführlichere Anleitung mit Screenshots der tatsächlichen Sheets-Umgebung benötigen.

Wie man eine Pivot-Tabelle nach Wert sortiert: Diese Quelle erklärt anhand eines Beispiels das Sortieren nach Werten in Pivot-Tabellen. Sie enthält auch ein Video, das Ihnen den Prozess veranschaulichen kann.

Pivot-Tabelle aufsteigend und absteigend sortieren: Dieser 1-minütige Leitfaden für Einsteiger ist eine gute Möglichkeit, das Sortieren in Pivot-Tabellen aufzufrischen, wenn Sie Interesse an einer schnellen Auffrischung haben.

Filtern Sie Ihre Daten

Microsoft Excel

Google Sheets

Daten in einer Pivot-Tabelle filtern: Diese Ressource von der Microsoft Support-Seite bietet eine Erklärung zum Filtern von Daten in Pivot-Tabellen in Excel. Wenn Sie mit Excel-Tabellen arbeiten, ist dies eine gute Ressource, die Sie als Lesezeichen speichern sollten, um schnell nachschlagen zu können.

Anpassen einer Pivot-Tabelle: Dies ist die Google Support-Seite zum Filtern von Pivot-Tabellendaten. Dies ist eine nützliche Ressource, wenn Sie mit Pivot-Tabellen in Google Sheets arbeiten und eine schnelle Ressource benötigen, um den Prozess zu überprüfen.

Filtern von Excel Pivot-Tabellen-Daten: Diese Anleitung zum Filtern von Daten in Pivot-Tabellen veranschaulicht den Prozess des Filterns in einer Excel-Tabelle mit Daten und enthält Tipps und Hinweise, wenn Sie anfangen, diese Tools selbst zu verwenden.

Mehrere Werte in Pivot-Tabellen filtern: Dieser Leitfaden enthält Details zum Filtern nach mehreren Werten in Google Sheet Pivot-Tabellen. Diese Ressource erweitert einige der Funktionen, die Sie bereits gelernt haben, und bereitet Sie darauf vor, komplexere Filter in Google Sheets zu erstellen.

Formatieren Sie Ihre Daten

Microsoft Excel

Google Sheets

Entwerfen Sie das Layout und Format einer PivotTable: Dieser Microsoft Support-Artikel beschreibt, wie Sie das Format der PivotTable ändern können, indem Sie einen vordefinierten Stil, umrandete Zeilen und eine bedingte Formatierung anwenden.

Pivot-Tabellen erstellen und bearbeiten: Dieser Help Center-Artikel informiert Sie darüber, wie Sie eine Pivot-Tabelle bearbeiten können, um ihren Stil zu ändern und Daten zu gruppieren.

Pivot-Tabellen sind ein leistungsstarkes Tool, mit dem Sie schnell Berechnungen durchführen und aussagekräftige Statistiken direkt aus der Tabelle, in der Sie arbeiten, gewinnen können! Indem Sie Pivot-Tabellen zum Berechnen, Sortieren und Filtern Ihrer Daten verwenden, können Sie sofort aussagekräftige Beobachtungen über Ihre Daten machen, die Sie in Berichten an Ihre Stakeholder weitergeben können.

Aber wie bei den meisten Tools, die wir in diesem Kurs behandelt haben, ist die beste Art zu lernen, zu üben. Dies war nur ein kleiner Vorgeschmack auf das, was Sie mit Pivot-Tabellen tun können, aber je mehr Sie mit Pivot-Tabellen arbeiten, desto mehr werden Sie entdecken.

Abfragen und Berechnungen

Video 187